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Framework for Automated Vehicle Benefits

 “Big picture” of 
automated vehicle 
impacts

 Short-term direct 
impacts

 Longer-term 
indirect impacts

 Focus on the relationship between the vehicle operations and energy/emissions
 Connected a traffic microsimulation software (PTV Vissim) with EPA’s emission 

inventory model for highway vehicles (MOVES) 
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Modeling Approach 
• Produce 15 random Vissim seeds from speed distribution
• Process Vissim output to create operating mode distributions
• Apply Vissim modeled roadway network in MOVES 
• Run MOVES model and analyze emission results
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Vehicle Automation Scenarios

 Modeled passenger cars on Interstate 91 northbound near 
Springfield, MA

 Speeds and traffic volumes from MassDOT
 Speed data from sensor on I-91 north of Springfield, MA
 Volume data from peak weekday morning hour by highway segment

 Modified CACC Driver Model DLL from Turner-Fairbank Highway 
Research Center (FHWA)
 Does not include platooning, lane change, or designated lane

 Ran three different microsimulation scenarios in Vissim:
1) Baseline with default Wiedemann 99 car-following algorithm
2) All vehicles using CACC driver model
3) Default Wiedemann 99 algorithm with traffic oscillations set to zero 

 MOVES project-level emissions calculated on a per vehicle basis for 
each scenario (grams/vehicle/hour)
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Map of I-91 Network
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Input I-91Traffic Speeds and Volumes

Link 
ID Link Description Date Day of Week AM Peak 

Time

AM
Peak

Volume
100 1. I91 North 3/10/2017 Friday 7:00-8:00 2562

200

On Ramp (US-5, I91 
North, Holyoke, 
Greenfield) 7/9/1997 Wednesday 7:00-8:00 714

205
On Ramp (US-5 to I91 
North) 11/13/2001 Monday 7:00-8:00 1045

305
Off Ramp (Exit 3/North 5 
to 57, Agawam) 4/17/2015 Friday 7:00-8:00 317

209
On Ramp (I91 North, 
Holyoke, Greenfield) 4/17/2015 Friday 7:00-8:00 351

210
On Ramp (I91 North, 
Holyoke, Greenfield) 4/17/2015 Friday 7:00-8:00 92
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Network Performance
• Box plots of speeds for each link

• 25th percentile, median, 75th percentile, mean (red dot)

Baseline CACC
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 Vehicle-specific power (VSP) and 
emissions are well correlated

 VSP is derived from instantaneous 
speed and acceleration along with 
other constants such as vehicle 
mass and aerodynamic drag
 Microsimulations run at 10 Hz

 MOVES operating modes assigned 
according to VSP and speed bins
 Separate op modes for braking (opModeID

0) and idling (opModeID 1)

MOVES Operating Modes

Beardsley (2011), MOVES Workshop 

http://article.sapub.org/10.5923.j.ijtte.20120103.03.html
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Operating Mode Distributions

I-91 Springfield Link 101



10

Emission and Energy Impacts
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Conclusions and Future Work
 Results

 Automated vehicles generally show less braking, leave less headway, and have 
less fluctuations in speed and acceleration than baseline

 Results are more pronounced for congested links
o CACC has less of an effect on energy and emissions in freely flowing traffic

 Traffic smoothing through setting the Wiedemann oscillations to zero does not 
have much benefit over the default car-following algorithm

 DLL needs to be thoroughly tested and validated

 Next Steps
 Vary traffic volumes to simulate higher densities of vehicles

o Expect automation to matter more for heavily congested scenarios
 Experiment with different penetrations of CACC-enabled vehicles
 Investigate lane changing capabilities to accommodate merging and weaving
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For More Information http://www.dot.gov/
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Extra Slides
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Network Energy and Emissions Impacts
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